数学联邦政治世界观
超小超大

不完全性定理

第一不完全性定理的内容是:“无论数学无矛盾地如何形式化,都存在着既不能证明也不能反证的命题。”

换句话说,不可能写出数学所需的所有公理。

既然这个定理被特意冠之以第一,那么也存在成为第二不完全性定理的东西。

第二不完备性定理是“任何形式的体系都不能证明其体系自身并不矛盾”。

这意味着,要显示某一形式体系并不矛盾,作为元逻辑,需要比该体系更有力的体系。

第一个在连续统问题上取得进展的是哥德尔。

受到罗素类型论思想的启发,哥德尔为集合论的公理系统ZFC构造了一个模型L,L的元素称为可构成集。

可构成集模型是一个分层的结构,其中每一层都是由前面层谱的可定义子集得到的。

哥德尔证明除了集合论已有的公理都在L中成立外,“可构成公理(V=L)”,即所有集合都是可构成的,在L中也成立,而这一公理蕴涵连续统假设,因此CH也在L中成立。

用数理逻辑的术语说,哥德尔的结果表明:如果ZFC是一致的,则ZFC+CH也是一致的。

因此,我们不能期望从ZFC证明CH是假的。

哥德尔构造集合论模型的方法是从全类V出发,L是对V的限制。

L包含了所有的序数(因此它是一个真类),它在“高度”上与V是一致的,只是它比V显得更“细”。

现在一般把包含所有序数的传递类称为“内模型”。

Ⅴ和L高度一致,宽度不够

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

零星诗月 连载中
零星诗月
鱼泷泷
一些磕CP的产文…单纯想写些自己喜欢的CP,不定期更新。(属性比较乱哈,有双女主,双男主,女攻男受,男攻女受,或者人兽恋……等等,有冒犯到的......
1.3万字1年前
际缘 连载中
际缘
钰柳州
【双男主】+【回忆杀】+【小甜饼】+【幻想】霁清轩和顾闫旭认识,相识许多年,却在结婚几年后出轨。顾闫旭在医院好似出现了幻觉,看到了18岁的霁......
2.0万字10个月前
变成了相方的猫 连载中
变成了相方的猫
高V不会
简介正在更新
29.6万字8个月前
黑白公子 连载中
黑白公子
大姑姥
黑白公子
0.8万字7个月前
你就是我的救赎1 连载中
你就是我的救赎1
陌然mrr
有一位叫做梦佳的神明,因神明有一项不能拥有感情的规则,所以从小便欠缺感情,她自己也知道自己和别的神明不一样,她更想要拥有感情的生活,没有感情......
4.1万字4个月前
少爷三十天后会笑 连载中
少爷三十天后会笑
大鼻屎
在洗手间洗脸时,抬头看见了镜子然后我这才慢慢看清了镜中的自己,看清了镜中自己脸上的痣——两个在鼻梁上,一个在左眼下,一个在锁骨上……还有一个......
1.3万字4个月前