数学联邦政治世界观
超小超大

莱因哈特基数与伯克利基数(第二版本)

莱因哈特基数Reinhardt基数

是非平凡基本嵌入的临界点j : V→V的V进入自身。

这个定义明确地引用了适当的类j.在标准ZF中,类的形式为{x|Φ(x,a)}对于某些集合a和公式Φ.

但是在 Suzuki中表明没有这样的类是基本嵌入j :V→V.

还有其他已知不一致的Reinhardt基数公式。

一是新增功能符号j用ZF的语言,连同公理说明j是的基本嵌入V,以及所有涉及的公式的分离和收集公理j.

另一种是使用类理论,如NBG或KM,它们承认在上述意义上不需要定义的类。

又或是有一个公理主张存在被称为Reinhardt基数的基数。

这个基数公理在普通集合论的公理系统ZFC中不能很好地表达,例如,需要考虑可以把真正的类作为理论对象来处理的ZFC的扩展,但是基数κ为reinhardd在某个集合论的universe对自己的初等映射j中,存在κ为j(κ)≠κ的最小顺序数的情况。

这个基数的概念引入后不久,这样的基数的存在与集合论的扩展相矛盾

(即, ZFC的这样的扩张和主张Reinhardt基数存在的公理相结合的体系是矛盾的,或者ZFC的这样的扩张可以作为定理证明Reinhardt基数的不存在)。

为了能够记述在以下叙述的Reinhardt基数的定义中j的存在主张,需要那样的扩展。

对于某语言l,从L-结构m到L-结构n的映射f是初等的( elementary )是指,对于所有m的要素的组a0,...,an 1和所有谓语逻辑中的L-逻辑式( x0,...,xn1),m = ( elementary )

伯克利基数

Berkeley 基数

是Zermelo-Fraenkel集合论模型中的基数K,具有以下性质:

对于包含k和α<k的每个传递集M,存在M的非平凡初等嵌入,其中a<临界点<K.

Berkeley基数是比Reinhardt基数严格更强的基数公理,这意味着它们与选择公理不兼容。

作为伯克利基数的弱化是,对于Vk上的每个二元关系R,都有(VK,R)的非平凡基本嵌入到自身中。

这意味着我们有基本的j1,j2, j3...

j1:(Vk,∈)→(VK,∈),

j2:(VK,∈,j1)→(Vk,∈,j1),

j3:(Vk,∈,j1,j2)→(VK,∈,j1,j2)等等。

这可以持续任意有限次,并且在模型具有依赖性选择的范围内无限。

因此,似乎可以通过断言更多依赖性选择来简单地加强这一概念。

对于每个序数入,存在一个ZF+Berkeley基数的传递模型,该模型在入序列下是封闭的,是不需要定义的类。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

戏子中的女孩:等着,我不会忘你 连载中
戏子中的女孩:等着,我不会忘你
路戏人悲平常心己
主角世界观十分宏大,至今为止,网上绝对没有一个人能超越!更改中……更改内容,名字题目这只是第三本的一个介绍,介绍世界世界观的一本小说,我只能......
2.9万字5个月前
锦年金缘 连载中
锦年金缘
浅和苏
很多年后,众人才知道,那年他们的遇见,早已注定……
0.6万字5个月前
有缘无分难相守 连载中
有缘无分难相守
🕊ღ田᭄ꦿ꯭🍾꧔ꦿ᭄芬ꦿ
一起爱而不得吧
1.3万字4个月前
君忆仙落凡尘 连载中
君忆仙落凡尘
三寸旧城七寸执怜
青丘狐族是上古时期九尾狐神族遗留下的血脉因地势缘由,而迁移致高处,因防有凡人意外闯入而设了结界,也为了保护族人,所以定下族规,以防不知情的族......
23.2万字3个月前
成为第二人格 连载中
成为第二人格
风起雾散尽
你是谁,谁是我你听得到吧,隐藏在我身体里的怪物我们本就是一个人,与我融为一体吧【无co】所有人都是主角的一缕灵魂
0.9万字2个月前
失去了,才去爱(复仇记) 连载中
失去了,才去爱(复仇记)
TK01234
(我叫周余,我的爸爸妈妈并不喜欢我,可却把我生了下来,我有一个妹妹和哥哥,哥哥叫周明。妹妹是养女,哥哥和爸爸妈妈们都很喜欢他,妹妹叫周甜。)......
1.9万字3周前