数学联邦政治世界观
超小超大

超级莱茵哈特基数与伯克利club(第二版本)

超级莱茵哈特基数

超级莱因哈特基数对于任一序数α,存在一

j:V→V with j(K)>α并具有临界点K,可以称为0=1是因为足够大的大基数公理会导致不一致性,从而使该系统下所有命题为真。

伯克利club

基数κ是伯克利基数,如果对于任何带κ的传递集k∈M和任何序数α<κ,都会有一个初等嵌入j:M<M和crit j<k,如果真的存在伯克利基数,那么就会有对力迫扩张绝对,它使最小的伯克利基数有共尾性ω,通过对κ的施加一定的条件,似乎可以增强Berkeley性质,如果κ是Berkeley和α,α∈M且M有传递,那么对于任意α<k,都有一个j:M<M和α<crit j<k和crit j(a)=a,对于任意一个可传递的M∋k都存在j:M≺M与crit j<K,基数是Berkeley,且仅当对于任何传递集M∋κ存在j:M≺M和α<crit j<k,因此δ≥k,δ也是伯克利,最小的伯克利基数也被称为δ_α,称κ为club-伯克利,如果κ是正则的,并且对于所有club→C⊆κ和所有带κ的传递集M∈M;

有j∈ε(M)和crit (j)∈C,称κ为limit club伯克利,它是一个club伯克利基数/limit伯克利基数,如果K为最小的伯克利,则y<k。

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

黑爷求别痞 连载中
黑爷求别痞
如素的风
黑爷身份:神秘莫测的传奇人物,拥有强大的实力和不可深测的背景。性格:冷酷而潇洒,不羁中透露出几分温柔与宠溺。他看似玩世不恭,实则内心深藏不露......
2.2万字2个月前
戏子中的女孩:等着,我不会忘你 连载中
戏子中的女孩:等着,我不会忘你
路戏人悲平常心己
主角世界观十分宏大,至今为止,网上绝对没有一个人能超越!更改中……更改内容,名字题目这只是第三本的一个介绍,介绍世界世界观的一本小说,我只能......
2.9万字2个月前
魔匙(不是也没有重名的书啊?!) 连载中
魔匙(不是也没有重名的书啊?!)
作者希岚
这是一个多元化的世界,除了人类,普通的动物,还有异兽,异族。这个世界上存在着一种宝物,名为魔匙,可由于力量太强而分散成八块碎片分别由八大族族......
1.6万字2个月前
勿入混圈 连载中
勿入混圈
段筱玖
女主段筱筱的作死之路
0.2万字2个月前
午夜图书馆探索异世界 连载中
午夜图书馆探索异世界
逆卷灵
艾米丽站在画面的前景,她手持一把古铜色的钥匙,钥匙上刻有复杂的符号,散发着微弱的光芒。她的表情既紧张又坚定,目光直视前方。
4.1万字1个月前
清依传 连载中
清依传
乔忆娇
原来,有一个人,从不在身边,心里却总是惦念!有一段情,隔着天涯,却倍感温暖!有一种承诺,不需说一生一世,可你知道此生此世,你注定与他相随……......
2.6万字1个月前