数学联邦政治世界观
超小超大

补丁版第(5)章格罗滕迪克

注:格罗滕迪克(2/3)篇章。

6  

  那在我们完义M~(k)为这样的范畴,其对象为二元对 h (X,e)其中 X 加上 e 为环Corr⁰~(X,X)ℚ 中的幂等元,而态射则由

Hom(h(X,e),h(Y,f))=f o Corr⁰~ (X,Y)ℚ o e

(Corr⁰~(X,Y)ℚ 的子集)定义.这正是要寻找的!这里是关于有理等价还是关于数值等价的有效母题范畴是依赖于 ~ 的选择的,我们将其记为M~ᵉᶠᶠ (k).前面定义的母题范畴可看作是由h (X,Δₓ) 为对象构成的全子范畴.

  例如,上面的讨论表明Corr⁰ᵣₐₜ(ℙ¹,ℙ¹)=ℤ ⨁ ℤ且e₀ ≝ (1,0) 和e₂ ≝ (0,1) 分别由{0} × ℙ¹和ℙ¹ × {0} 所代表.相应于分解Δᴘ¹ ~ e₀+e₂,我们可得分解

h(ℙ¹,Δᴘ¹)=h⁰ ℙ¹ ⨁ h² ℙ¹

这里hⁱ ℙ¹=h(ℙ¹,eᵢ)(这在 Mᵉᶠᶠᵣₐₜ (k) 中和在 Mᵉᶠᶠₙᵤₘ 中都成立).我们记 𝟙 = h⁰ ℙ¹,L=h² ℙ¹.

从某种意义上讲,有效母题范畴是最有用的¹²,但是一般地人们更倾向于一个在其中每个对象都存在对偶的范畴.这极易通过将 L 取逆实现.

三论

M~(k)的对象现在为三元对 h (X,e,m),其中 X 和 e 如前,而 m ∈ ℤ.态射定义为

Hom(h(X,e,m),h(Y,f,n))=f ◦ Corr~ⁿˉᵐ(X,Y)ℚ o e.

这是 k 上母题范畴.前面定义的母题范畴可看作是由 h (X,e,0) 为对象构成的全子范畴

有时称 Mᵣₐₜ (k) 为 Chow 母题范畴,而称 Mₙᵤₘ(k) 为 Grothendieck(或数值) 母题范畴.

6 M~(k)和X ⇝ hX 的所知

范畴M~(k)的已知性质

● 态射集合是 ℚ― 向量空间,若~为num则其为有限维的 (但是其他情形一般不是有限维的).

● 母题的直和存在,故M~(k)是加法范畴.例如

h(X,e,m)⨁ h(Y,f,m) = h (X ⊔ Y,e ⨁ f,m).

● 母题 M 的自同态环中的一个幂等元 f能将 M 分解为 f 的核与像的直和,故M ~ (k) 是一个伪 Abel 范畴.例如,若M=h (X,e,m),则

M = h (X,e ― e f e,m) ⨁ h(X,efe,m).

● Mₙᵤₘ (k) 是 Abel 范畴且为半单范畴,但是M~ (k) 一般不是 Abel 范畴,只有在 k 是有限域的代数扩张的情形或许可能是 Abel 范畴 ¹³.

● M~(k)上有好的张量积结构,定义为

h(X,e,m) ⨂ h (Y,f,n)=h (X × Y,e × f,m+n).

记 h X=h(X,Δₓ,0);则h X ⨂ h Y = h (X × Y ),故对X⇝h X Kiinneth 公式成立.

_____

¹²例如,在探究具有 ℤ (而不是 ℚ) 系数的有限域上的有效母题范畴时,Niranjan Ramachandran 和我发现了此范畴中的 Ext 的阶数和 Zeta 函数的特殊值之间的一个优美的关系,但是当从这种有效母题范畴过渡到母题的整个范畴时,这个关系却消失了. 一原注

¹³一个周知的猜想断言,当 k 是有限域的代数扩张时,自然函子Mᵣₐₜ(k)→ Mₙᵤₘ(k)是一个范畴等价. 一 原注

7

● 上述结论对有效母题范畴亦成立,但是在M~ (k) 中,对象存在对偶. 这意味着对每个母题 M 均存在对偶母题 Mᵛ 和“赋值映射” ev:Mᵛ ⨂ M → 𝕀 并且满足某种泛性质.例如,当 X 连通时有

h(X,e,m) ᵛ=h(X,eᵗ,dim X ― m).

应该强调的是,尽管Mᵣₐₜ (k) 不是Abel范畴,但依然是非常重要的范畴,特别是,它比 Mₙᵤₘ (k) 包含了更多的信息.

X ⇝ h X 是泛上同调理论吗?

当然,函子X ⇝ hX将 X 映为其Chow母题是有泛性质的.这几近赘述:好的上同调理论即为可通过Mᵣₐₜ (k) 进行分解的理论.

然而对于Mₙᵤₘ (k) 却存在着问题:一个数值等价于零的对应将给出母题间的零映射,但是一般地我们并不知道其是否在上同调上也定义零映射.为使一个好的上同调理论能通过 Mₙᵤₘ (k) 进行分解,其须满足下述猜想:

猜想 D 如果一个代数链数值等价于零,则其上同调类也是零.

换句话说,若cl(γ)≠ 0,则 γ 不会数值等价于零.结合Poincaré对偶,我们可重述为:如果存在上同调类 γ 满足cl(γ)∪γ' ≠ 0,则存在一个代数链γ'' 满足γ" · γ" ≠ 0.因此,此猜想是一个关于代数链的存在性断言,不幸的是,我们尚无方法能够证明代数链的存在性,更具体地说,当我们期望一个上同调类是代数的,即是代数链类,我们尚无途径能给出具体证明,这是一个主要问题,至少是算术几何和代数几何中的主要问题.

在特征为零时,猜想 D 对 Abel 簇是对的,猜想 D 可由 Hodge 猜想推出.

为什么 hX 不是分次的?

当我们假设猜想 D 成立时,好的上同调理论 H 确实能通过X ⇝ hX分解.这意味着存在从Mₙᵤₘ (k) 到 H 的基域上的向量空间范畴的函子 ω 使有:

ω(h X)=H*(X) ≝ ⨁² ᵈⁱᵐ ˣ ᵢ₌₀ Hⁱ (X).

显然应该存在 hX 的一个分解使其能够统一诱导出每个好的上同调理论所具有的H*(X)分解,对于ℙ¹由 (2) 知这是对的,下述猜想是由Grothendieck提出的.

猜想 C 在环 End(hX)=Cᵈⁱᵐ ˣₙᵤₘ (X × X) 中,对角 Δₓ 可典范地分解成幂等元之和:

Δ ₓ=π ₀+ · · · + π₂dim X· (3)

此表示式决定一个分解

h X=h⁰ X ⨁ h¹ X ⨁ · · · ⨁ H² ᵈⁱᵐ ˣ (X). (4)

这里hⁱ X=h (X,πᵢ,0),此分解应该有这样的性质,即对每个满足猜想 D 的好的上同调理论分解 (4) 给出如下分解:

H*(X)=H⁰(X)⨁ H¹(X)⨁ · · · ⨁ H² ᵈⁱᵐ ˣ (X).

此猜想也是关于代数链的存在性的断言,因此是很困难的.对于有限域上的非奇异射影簇(此时某种Frobenius 映射的多项式可用于分解母题)和特征零的Abel簇(由定义知Abel簇具有交换群结构,映射m:X → X,m ∈ ℤ,可用于分解h X)这是对的.

  假如猜想 C 是对的,则可谈论母题的权(weight).例如,母题hⁱ X的权为 i,而 h (X,πᵢ,m)的权为i ― 2m.母题称为是纯粹的 (pure) 是指其具有单一的权(singleweight).每个母题都是纯粹母题的直和.

只有证明了猜想C和猜想 D,Grothendieck 的梦想才能得以实现.

8

附注6.1 Murre[Mu]曾经猜测分解 (3) 即使在Cᵈⁱᵐ ˣᵣₐₜ (X × X) 中也是存在的,已证明他的猜想等价于 Beilinson 和Bloch 关于 Chow 群上的一个有趣的滤链的存在性猜想.

什么是 Tannaka 范畴(Tannakian category) ?

所谓仿射群,是指一个矩阵群(可能是无限维的)¹⁴.对于 ℚ 上的仿射群 G,其在有限维 ℚ― 向量空间上的表示的全体构成一个带有张量积和对偶的 Abel 范畴Repℚ(G),而遗忘函子则是一个从 Repℚ(G)到 Vecℚ 的保持张量积的忠实函子(faithful functor).

 ℚ 上的一个中性的 Tannaka 范畴 (neutral Tannakian category) T 是指一个 Abel 范畴,其带有张量积和对偶并存在到Vecℚ的保持张量积的忠实的正合函子;这样一个函子 ω 的张量积自同构构成一个仿射群 G,并且函子 ω 的选取决定了范畴的等价T → Repℚ(G).因此,一个中性的 Tannaka 范畴即是一个没有指定“遗忘”函子的仿射群的表示范畴的抽象形式 (正如向量空间是 kⁿ 的没有指定基的抽象形式一样).

 ℚ上的一个 Tannaka 范畴 T (未必是中性的) 是指一个Abel 范畴,其带有张量积和对偶并存在到某特征零的域 (未必是ℚ)上的向量空间范畴且保持张量积的忠实的正合函子;我们还要求End(𝟙)=ℚ 成立;这样的函子的选取给出了 T 到仿射群胚范畴的一个范畴等价.

 Mₙᵤₘ (k) 是 Tannaka 范畴吗?

 不,不是 Tannaka 范畴,在一个带有张量积和对偶的 Abel 范略 T 中是可以定义一个对象的自同态的迹的.其将被任何忠实的正合函子 ω:T → Vecℚ 所保持,因此对于对象 M 的恒等映射 u,有

Tr(u|M)=Tr(ω(u)|ω(M))=dimℚ ω(M),

此为向量空间的维数,故为非负整数.对于簇 X 的恒等映射 u ,Tr(u|h X)即为 X 的 Euler-Poincaré 特征 (Betti 数的交错和).例如,若 X 是亏格 g 的曲线,则有

Tr(u|h X)=dim H⁰ ― dim H¹+dim H² =2 ― 2g,

这可以是负的.这证明不存在正合的忠实张量函子 ω :Mₙᵤₘ(k) →Vecℚ.

为修正这一点,我们不得不变动张量积结构的内在机理.假设猜想 C 成立,则每个母题有分解 (4).如果当 ij 为奇数时,我们改变“典范”同构

hⁱ X ⨂ hʲ X ≃ hʲ X ⨂ hⁱ X

的负号,则 Tr(u|h(X)) 就变成了 X 的 Betti 数的和而不是交错和,这样 Mₙᵤₘ (k) 就成为一个 Tannaka 范畴 (若 k 特征为零则其为中性,但其他情形不然).因此,当 k 是有限域的代数扩张时,Mₙᵤₘ (k) 是非中性的 Tannaka 范畴(但是,由于猜想 D 尚未被证实,所以我们不知道标准的上同调是否可通过其进行分解).

7重温 Weil 猜想

Zeta 函数

设 X 是 𝔽ᴘ 上的非奇异射影簇,固定𝔽ᴘ的一个代数闭包 𝔽 .对每个 m,𝔽 有唯一的 pᵐ 元子域𝔽ₚᵐ. 记 X (𝔽ₚᵐ) 为 X 上坐标在𝔽ₚᵐ中的点的集合,此为有限集合,X 的 Zeta 函数 Z(X,t)定义为

tᵐ

log Z(X,t)=Σₘ≥₁ |X (𝔽ₚᵐ) |──.

   m

______ 

¹⁴更确切地说,一个仿射群是域上的一个仿射群概型(未必是有限型的).每个这样的群都是那些能够实现为某 GLₙ 的子群的仿射代数群概型的逆极限. ― 原注

9 

例如,设 X=ℙ⁰= 单点 .则对任意的 m 有 |X(𝔽ₚᵐ)|=1,故

tᵐ 1

log Z(X,t)=Σₘ≥₁ ― =log ─── ;

m 1― t

因此

   1

   Z(X,t)= ── .

   1― t

作为第二个例子,设X=ℙ¹.则 | X(𝔽ₚᵐ)|=1+pᵐ,故

tᵐ 1

log Z(X,t)=Σ (1+pᵐ) ─ =log ───; m (1―t)(1―pt)

因此

1

  Z(X,t)=────

(1― t)(1― pt)

  

Weil 的奠基性的工作

40年代,Weil证明对于 𝔽ₚ 上亏格 g 的曲线 X,有:

p₁ (t)

 Z(X,1)=──── p₁(t) ∈ ℤ [t],(5a)

   (1―t)(1― pt)’

p₁(t)=(1― α₁t)· · ·(1― α₂g t)其中|αᵢ|

1

=p─. (5b)

2

  特别地,这说明有

|X (𝔽ₚ)|=1+ p ― Σ²ᵍ ᵢ₌₁ αᵢ.

||X(𝔽ₚ)|― p ―1|=| Σ²ᵍ ᵢ₌₁ αᵢ| ≤

  1

2gp ─ .

2

  Weil 关于这些结论的证明本质上用到曲线的 Jacobi 簇.对于 ℂ 上亏格 g 的曲线X,X (ℂ)即为亏格 g 的 Riemann 曲面,故 X (ℂ)上的全纯微分构成一个 g 维复向量空间 Ω¹(X),并且同调群 H₁(X(ℂ),ℤ) 是秩 2g 的自由ℤ―模. H₁(X(ℂ),ℤ)的一个元素 γ 定义了 Ω¹ (X) 的对偶向量空间 Ω¹ (X)ᵛ 中的一个元素ω ↦ ∫ ᵧ ω.从 Abel 和 Jacobi 的时代就已经知道此映射将 H₁ (X(ℂ),ℤ)实现为 Ω¹(X)ᵛ 中的一个格 ∧ ,故商J(X)=Ω¹(X)ᵛ/∧是复环面 ― 选择 Ω¹ (X) 的一个基即可定义一个同构J(X) ≈ ℂᵍ/∧.J(X)的自同态是 Ω¹ (X)ᵛ 的将 ∧ 映为自身的线性自同态,由此知End (J(X))是有限生成 ℤ― 模.所以End (J(X))ℚ是一个有限秩的 ℚ 代数.X 的任何极化(polarization)定义 End (J(X))ℚ 的一个对合 (involntion)α↦α†,由于对任意非零 α 迹Tr(αα†)>0.故其为正定.

复环面 J (X)是一个代数簇.40年代,在Weil研究这些问题的时候,尚不知如何定义不同于 ℂ 的域上的曲线的 Jacobi 簇.事实上,那个年代的代数几何基础尚不适合于这项工作,因此,为了使他对(5a,5b)证明能基于坚实的基础,他不得不首先重写代数几何的基础,然后在任意域上发展 Jacobi 簇的理论.

对于 𝔽ₚ 上的任意簇 X ,存在一个正则映射 π:X → X (称为Frobenius 映射),其在点上的作用为 (α₀:. . . :αₙ)一(αᵖ₀:. . .:αᵖₙ),并且具有性质:πᵐ 在X(𝔽)上作用的不动点恰为 X (𝔽ₚᵐ) 中的元素. Weil证明了不动点公式,这使他得以证明,对于 𝔽ₚ 上的曲线 X,Z(X,t)=P₁(t)/(1― t)(1― pt),其中 P₁(t)等于 π 在 J (X) 上作用的特征多项式,并且他知道此多项式具有整系数.极化的选择定义了 End (J(X))ℚ 上的一个对合,Weil证明其为正定. 由此他能够推出不等式

1

|αᵢ|<p─ .

2

 Weil 猜想的陈述

10

 Weil 关于曲线和其他簇的结果启发了下述猜想:对于 𝔽ₚ 上的 n 维非奇异射影簇X,有

P₁(t) · · · P₂ₙ₋₁(t)

Z(X,t)=───────────,

P ᵢ(t) ∈ ℤ[t], ↑ 6(a)

(1 ― t)P₂(t) · · · P₂ₙ₋₂(t)(1― Pⁿ t)

Pᵢ(t)=(1― αᵢ₁ t) · · · (1―αᵢbᵢ t) 这里|αᵢj|=pⁱ/²; (6b)

进而,如果 X 来自于 ℚ 上的簇 X 的模 p约化,则 bᵢ (Pᵢ 的次数)应是复流形 X (ℂ)的Betti 数.

标准猜想(standard conjecture)和Weil 猜想

在 Grothendieck 定义他的 Étale 上同调群的时侯,他和合作者们证明了一个不动点定理,这使他们得以证明 Z(X,t)可表为形式(6a),其中 Pᵢ 等于 Frobenius 映射 π 在 Hⁱₑₜ (X,ℚℓ)上作用的特征多项式.然而,尚不能断定多项式 Pᵢ 的系数在ℤ 中,而只能断定在 ℚℓ 中,并且不能排除其或许会依赖于 ℓ.

1968年,Grothendieck 提出了两个猜想,分别被称为 Lefschetz 标准猜想和Hodge 标准猜想,如果这些猜想能得以证实,则人们就可以通过用簇的母题理论替代曲线的 Jacobi 来将 Weil 关于曲线情形的Weil猜想的证明扩展到任意维的代数簇的情形.

  上述的猜想 C 是 Lefschetz 标准猜想的弱形式,如上所知,此猜想连周知的猜想 D 将意味着存在一个好的母题理论,还将意味着 (6a) 式成立并且 Pᵢ (t) 是 π 作用在母题 hⁱ X 上的特征多项式,特别是、Pᵢ (t) 的系数在 ℚ 中,不依赖于ℓ ,简单的讨论进而会证明其系数在 ℤ 中.

Hodge 标准猜想是一个正面的断言,其意味着每个母题的自同态代数具有一个正定的对合,假如这是对的,则由Weil的讨论方法即能证明 (6b).

在特征零的情形,Hodge 标准猜想可用解析方法证明,但在非零特征的情形,仅对很少的簇知其成立.然而,其亦可由 Hodge 猜想和 Tate 猜想推得 [Mi].

Deligne[Del] 用了一个非常巧妙的办法成功地完成了 Weil 猜想的证明,但其证明不用标准猜想,因此,Grothendieck 的话 ([Gr] p.198):

标准猜想的证明连同奇异消解问题[非零特征的情形]对我来说似乎是

代数几何中最紧迫的任务.

至今依然正确.

8 母题的 Zeta函数

ℚ 上的簇的 Zeta 函数

假设 X 是 ℚ 上非奇异射影簇.我们先将定义 X 的多项式去分母使其具有整系数,然后将这些方程模素数 p,即得 𝔽ₚ。上的一个射影膜 Xₚ.如果 Xₚ 仍然是非奇异的,则称 p 是“好的”,除有限个以外,所有的素数都是好的,我们定义 X 的 Zeta 函数为¹⁵

ς(X,s)=∏ Z (X ᴘ₁ p⁻ˢ).

   好的p

例如,当 X=ℙ⁰=单点时,

1

ς(X,s)=∏ₚ────── ,

   1―p⁻ˢ

_____  

¹⁵还应该包含对应于“坏”素数和实数的因子.以下我将忽略有限多个因子. —原注

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

女寝海龟汤实录 连载中
女寝海龟汤实录
养老院里劈过腿
每日一则海龟汤。女寝444成员:橙子、花花、佳琪、小青档案记录&管理人员:~养老院里劈过腿~
1.0万字2个月前
魔匙(不是也没有重名的书啊?!) 连载中
魔匙(不是也没有重名的书啊?!)
作者希岚
这是一个多元化的世界,除了人类,普通的动物,还有异兽,异族。这个世界上存在着一种宝物,名为魔匙,可由于力量太强而分散成八块碎片分别由八大族族......
1.6万字2个月前
江怀南岸 连载中
江怀南岸
湫已
他可不是什么救赎,是一个实实在在的深渊,而我,困于深渊,早已见不到阳光后来我在废墟里竟然看见,那处死掉的玫瑰花圃又重新发了芽,我才明白,那是......
1.5万字2个月前
时光机恋曲 连载中
时光机恋曲
参宿列队
刘文和一个异国女孩拯救时空的故事,不甜不要钱。
3.3万字1个月前
喜美:我在恐怖游戏里当主角 连载中
喜美:我在恐怖游戏里当主角
雾小渺wu
「喜美同人文01」——推推隔壁《喜美:童话镇》/本书开写于2024.9.4【不定时更新】-宋喜星×简喻美【双强】[双强+HE+爽文+幻想]-......
2.2万字1个月前
陌上月寒 连载中
陌上月寒
乔忆娇
神族战神转世为花界一个古灵精怪的小花精结识了温文尔雅的芍药花精又遇到了被抛弃的魔族殿下,她与他们之间会发生怎样的故事。
1.4万字4周前