数学联邦政治世界观
超小超大

第三篇章终极集合论宇宙(V=UltimateL)

终极集合论宇宙(V=UltimateL)

  TheMostowskiCollapse and the lnner Model

  program

  w.Hughwoodin

  usiversity of CaEtyaia BerLeley

  October 11.2013

  TheMostowskiCoollapse

  Theorcm

  Suppose Mis atransitivesetandΧ≺M.Tbenthereisa unique transitve set Nand isomorphism

  π:N≅Χ.

  ThegentrallIatiorsof the Mostowski Collapseareubiquitousin set Theory.

  The Universeofsets

  Thepowersct

  suppose Χ is a set 。The powerset of Χ is the set

  Р(X)={Y丨Y is a subset of Χ}. 

   CumuJativeHierarchyofScts TheunherseVofsetsisgeneratedbydeflningVαbyinductionontheordinalα:

  1.V₀=∅.

  2.Vα+1=Ρ(Vα).

  3.ifαisalimitordinalthenVα=Uᵦ<αVᵦ.

  ⇨EverysetbeloegstoVαforsomeordinalα.

  Logicaldefinabilityfromparameters

  BchedDooset

  SupposeΧisatransitiveset.AsubsetΥ⊆Χislogicallydeflnablein(Χ,∈)fromparmetersifforsomeformula φ[x₀……x₀]andforsomeparametersa₁……a₂∈Χ,

  Υ={a∈Χ丨(Χ,∈)╞ φ[a,a₁……a₀]}

  Thedefinablepowerset

  ForeachsetΧ,Рᴅel(Χ)denotesthesetofallΥ⊆ΧsuchthatΧislogicallydtfinableinthestructure(Χ,∈)fromparametersinΧ.

  ⇨(AxiomofChoice)Рᴅel(Χ)=Р(X)ifandonlyifΧisflnite。

  ⇨Рᴅel(Vᴊ+1)∩Р(R)isexactlytheprojectivesets.

  Theeffectivecumulativehierarchy:L

  Gōdd'sconstructibleuniverse.L

  DefineLαbyinductiononαasfollows.

  1.L₀=∅.

  2.(Successorcase)Lα+1=Рᴅel(Lα).

  3.(Limitcase)Lα=∪{Lᵦ丨β<α).

  ListheclassofallsetsΧsuchthatΧ∈Lαforsomeordinalα.

  Theorem(Gōdel)

  SupposeΧ≺Lα.Thenthereisauniqueordinalβand

  isomorphism

  π:Lᵦ≅Χ.

  Theorem(Scott)

  AssumeV=LSupposeMisatransitivesetandthat

  Χ≺M

  isanelementarysubstructuresuchthatΧ≅Vαforsomeα.ThenVα=Χ.

  AxiomsewhichasserttheexistenceofΧ≺MwhereMistransitive.

  Χ≅Vα

  andΧ≠Vαyieldthemodernhierarchyoflargecardinalaxioms.

  ⇨TheseaxiocnsimplyV≠L.

  Stiongaxcmsofinfinity:largecardinalaxioms

  BzrJmpJateforlargecardinalaxioms

  Acardinalκisalargecardinalifthereexistsanelementaryembedding.

  j:V→M

  suchthatMisatrarsitiveclassandκistheleastordinalsuchthatj(α)≠α.

  ⇨RequiningMbeclosetoVyitldsahierarchyoflargecardinalaxioms:

  ⇨simplestcaseiswhereκisameasurablecardinal.

  ⇨M=VcontradictstheAxiomofChoice.

  ThelnnerModelprogramseeksenlargementsofLinlargecardinalscanexist.

  ⇨Theproblembecomesmorediffrcultasoneascendsthehierarchy.

  Thehierarchyoflargecardinalaxioms-shortversion

  ⇨Thereisaproperclassofmeasurablecardinals.

  ⇨Thereisaproperclassofstrongcardinals.

  ⇨Thereisaproperclassofwoodincardinals.

  ⇨Thereisaproperclassofsuprstrongcardinals.

  …………………

  ⇨Thereisaproperclassofsupercompactcardinals.

  ⇨Thereaproperclassofextendiblecardinals.

  ⇨Thereaproperclassofhugecardinals.

  ⇨Thereaproperclassofw-hugecardinals.

  EnlargementsofL

  Deflnition

  SupposeEisaset(orclass).Then

  1.L₀[E]=∅.

  2.(Successorcase)Lα+1[E]=Рᴅel(Z)Where

  Z=Lα[E]∪{E∩Lα[E]}.

  3.(Limitcase)Lα[E]=∪{Lᵦ[E]丨β<α}.

  ⇨L[E]istheclassofallsetsΧsuchthatΧ∈Lα[E]forsomeordinalα.

  ⇨lfE∩L=0thenL[E]=L

  ⇨ForeverysetΧthereisasetEsuchthatΧ∈L[E].

  ⇨ThisisequivalenttotheAxiomofChoice.

  Thebuildingblocksforinnermodels:Extenders

  supposethat

  j:V→M

  isarelementaryembeddingwithcniticalpointκ,κ<η.andthat

  Р(η)⊂M.

  The(strong)extcnderEoflengthηdcrivedfromj

  TheextenderEoflengthηdefinedfromjisthefunction:

  E:Р(η)→Р(η)

  whereE(A)=j(A)∩η.

  TwoordinalsassociatedtotheextenderE:

  ⇨CRT(E)=min{α丨E(α)≠α}=κ.

  ⇨LTH(E)=ηwheredocn(E)=Р(η).

  Largecardinalaxiomsintermsofextenders

  δ isastrongcardinalif

  ⇨foreach γ>δ thereexistsanextenderEsuchthat

  CRT(E)=δandLTH(E)≥ γ.

  δisasupercompactcardinalif

  ⇨foreach γ>δ thereexistsanextenderEsuchthat

  E(CRT(E))=δandLTH(E)≥γ.

  δisanextendiblecardinalif

  ⇨foreachγ>δ thereexistsanextenderEsuchthat

  CRT(E)=δ,E(δ)>γ.andLTH(E)>E(γ).

  weakextendermodelsandextendermodels

  Foralargecardinalaxiom Φ:

  Deflnition

  AtrarsitiveclassNisaweakextendermodelforΦifΦiswitnessedtoholdinNbyextendersEofNsuchthat

  E=F丨N

  forsomeextenderF.

  ⇨lfΦholdsinVthenVisaweakextendermodelforΦ.

  Deflnition

  AtransitiveclassNisanextendermodelfor Φ ifforsomesequenceEofextenders:

  1.N=L[E].

  2.Nisaweakextendermodelfor Φ andthisiswitnessedbytheextendersonthesequtnceE.

  ThelnnerModelprogram

  ForaLargecardinalaxiom Φ andextendermodels.thesimplestgoalofthelnnerModelprogramistoanswerthequestion:

  Question

  Assumethat Φ holds.MustthereexistanextendermodelsuchthatN≠V?

  Theorem(Martin-Steel)

  Supposethereisaproperclassofwoodincardinals.ThenthereisanextendermodelNforaproperclassofwoodincardinalssuchthatN≠V.

  Theorem(Martin-Steel)

  SupposethereisaproperclassofsuptrstrongcardinalsandthelterationHypothesisholds.ThenthereisisanextendermodelNforaproperclassofsuperstrongcardinalssuchthatN≠V.

  Beyondsuperstrong:theUniversalityTheorem

  Thcorem(UniversaΓtyTheorcm)

  SupposethatNisaweakextendermodelforδissupercompact.

  supposethatFisanextendersuchthat:

  ⇨CRT(F)≥δandNisclosedunderF.

  ThenF丨N∈N.

  ⇨ForanyextendtrF.LisclosedunderFbutF丨L∉L

  ⇨AnyweakextendermodelforδissupercompactinhenitsallLargecardinalsfromVwhichoccuraboveδ.

  Conclution

  TheextensionofthelnnerModelprogramtothelevelofonesupercompactcardinalmustyieldtheultimateinnermodel

  ⇨itmustyieldanultimateversionofL.

  Gödel’stransitiveclassHOD

  ⇨ForeachsetΧ,TC(Χ)isthesmallesttransitivesetMwithΧ∈M.

  Deflnition

  Foreachordinalα.HODα+1isthesetofallsetsΧ⊆Vαsuchthat:

  1.ΧisdefinableinVαfromordinalparameters.

  2.lfY∈TC(Χ)thenYisdtfinableinVαfromordinalparameters.

  ⇨ThedefinitionofHODα+1isamixtureofthedefinitionofLα+1andVα+1.

  OefinlenM(Gödel)

  HODistheclassofallsetsΧsuchthatΧ∈HODα+1forsomeα.

  whatabutextendermodelsforsupercompactcardinals?

  Deflnition

  supposethatE=(Eα:α∈Ord)isasequence.

  ThenEisweakly∑₂-definableifthereisaformua φ(x)suchthatforallβ∈ord.

  ⇨for all β<η₁<η₂<η₃ .if

  (E)ᵛᵉˢ丨β=(E)ᵛᵉˢ丨β

  then(E)ᵛᵉ¹丨β=(E)ᵛᵉ²丨β=(E)ᵛᵉ³丨β.

  where(E)ᵛ⁷={a∈Vα丨Vγ╞φ [a]}.

  ⇨Thesequtnce(HOD∩Vα:α∈Ord)isweakly∑₂-dtfnable.

  Aseriousobstruction

  ⇨Assumethereisaproperclassofsupercompactcardinals

  Byclassforcingonecanarrangethatthefollowinghold

  1.V=HODandthereisaproperclassofsupercompactcardinals.

  2.SupposeEisanextendersequencesuchthat

  (a)L[E]isanextendermodelforδisasupercompact

  (b)Eisweakly∑₂-deflnable.

  ThenV⊆L[E].

  Ramiflcations

  RulesoutdeVelopingthelnnerModelprogramtothelevelofconstructingextendermodelsfor δ issupercompact.

  ⇨lnfactonecannotgobeyondtheMartin-Steelextendermodelsinanyessentialway.

  Рartial-extendersandpartial-extendermodels

  A partial-extender E of length η isobtainel from an elementary embedding.

  j:N→M

  whereN∩Р(η)=M∩Р(η):

  1.E has domain N∩P(η):

  2.E(A)=j(A)∩η.

  Deflnition

  AtransitiveclassNisapartial-extendermodelsequenceEofpartial-extenders:

  1.N=L[E].

  2.Nisaweakextendermodelfor Φ andthisiswitnessedbythe ∽₁:alextendersonthesequenceE.

  Goodpertial-extendermodels

  ⇨Eveyweakextendermodelcanbere-organiIedasapartial-extendermodel.therefore:

  ⇨ReguireagererakIationoftheMostowskiCollapse.

  Defmition

  SupposeL[E]isapartial-extendermodel.ThenL[E]ispartial-extendermodelifforall

η<α.if

  X≺(Lα[E].E∩Lα[E])

  istheelementarysubstructuregivenbytheelementswhicharedeflnablewithparametensfromηthen.

  Χ≅(Lᵦ[E].E∩Lᵦ[E])

  for some β.

  ⇨lfL[E]isagoodpartial-extendermodelthenthecontinuumHypothesisholdsinL[E].

  Mitchell-Steelmodels

  ⇨Thebasicframewcrkforgoodpartial-extendersmodelsforlargecardinalsuptothelevelofsuperstrongcardinalsoriginatesintheconstuctionsofMitchellandSteel.

  ⇨ThereisanimportantvaiationduetoJensenwhichisequivalentbutyiekjsmodelswithstrongercondensationproperties.

  Theeorem(MitchellSteeletal)

  Assumethereisaproperclassofwoodincardinals.Thenthereisapartial-extendermodelL[E]foraproperclassofwoodincardinalssachthat

  (1)Eisweakly∑₂-definable.

  (2)L[E]isagoodpartial-extendermodel.

  Theorem(Mitchell-Steeletal)

  AssumetheltenationHypothesisandthatthereisaproperclassofsuperstrongcardinals.Thenthereisapartial-extendermodelL[E]foraproperclassofsuperstrongcardinalssuchthat

  (1)Eisweakly∑₂-definable。

  (2)L[E]isagoodpartial-extendermodel.

  Conjecture

  AssumethelterationHypothesisandthatthereisanextendibiecardinal.Thenthereisapartial-extendermodelL[E]forasupercompactcardinalsuchthat

  (1)Eisweakly∑₂-definable.

  (2)L[E]isagoodpartial-extendermodel.

  Afirststep

  Theorem

  AssumethereisasupercompactcardinalandthatthelterationHypothesisholds.Thenthereisapartial-extendermodelL[E]suchthat

  (1)Eisweakly∑₂-deflnable。

  (2)L[E]isagoodpartial-extendermodel.

  (3)L[E]isaweakextendermodelfortheexistenceofκsuchthatκisκᵒⁿ-supercompactforalln<ω.

  ⇨Thetheoremshowsthattheobstructionscanbesuccessfullydealtwith.

  ⇨Theconstructionsseemtoindicatehowtohandlethegeneralcase.

  TheGeneric-Multiverse

  Definition

  SupposethatMisacountabletransitivesetandthat

  M╞ZFC.

  Thegeneric-multiversegeneratedbyMisthesmallestsetVᴍofcountabletransitivesetssuchthatforallpairs(N₀,N₁)ofcountabletransitivesetsif

  1.N₁isagenericextensionofN₀

  2.eitherN₀∈VᴍorN₁∈VᴍthenbothN₀∈VᴍandN₁∈Vᴍ.

  (meta)Definition

  TheGeneric-Multiverseisthegeneric-multiversegeneratedbyV.

  Mitchell-SteelmodelsandtheGeneric-Multiverse

  Lemma(V=L)

  VistheminimumuniverseoftheGeneric-Multiverse.

  Thcorem

  SupposeL[E]isan(iterable)Mitchell-Steelmodeland

  L[E]╞TbctelsawoodincardinΓ.

  ThenthereisaMitchell-SteelmodelL[F]⊂L[E]suchthatL[E]isageneΙcextensionofL[F].

  ThesametheoremappliestotheextensionofMitchell-Steelmodelsbeyondsuperstrong.

  lsUltimate-LageneralizedMitchell-Steelmodel?

  AssumetheHerationHypothesisholdsinVandthatthereisaproperclassofmeasurablewoodincardinals.

  ⇨ltisnotknownifthereexistsaMitchell-SteelmodelL[E]foraproperclassofmeasurablswoodincardinalswithinwhichEisdefinablecevenfromparameters).

  ⇨SupposeL[E]isaMitchell-Steelmodelwithinwhichthereexistsawoodincardinal.TheinductivefirstorderrequirementsonLα[E]arevtrycomplicated:

  ⇨thingsoelygetworseforthegentraliIedMitchel-Steelmodels.

  Twoquestions

  1.lsthereasimplecandidatefortheaxiomⅤ=Ultimate-L”?

  2.lsUltimate-Levenagoodpartial-extendermodel?

  UniversallyBairesets

  Definition(Feng-Magidoe-woodin)

  AsetA⊆RisuniversallyBaireifforalltopologicalspacesΩandforallcontinuousfunctions:Ω→R.thepreimageofAbyπhasthepropertyofBaireinthespaceΩ.

  ⇨UniversallyBairesetsareanabstractgeneraliIationoftheborelsets.

  Theorcm

  SupposethatthereisaproperclassofwoodincardinalsandthatA⊆RisuniversallyBaire.Theneveryset

  B∈L(A,R)∩Р(R)

  isuniversallyBaire.

  HODᴸ(ᴬᴿ)andlargecardinalaxioms

  Definition

  SupposethatA⊆RisuniversallyBaire.

  ThenΘᴸ(ᴬᴿ)isthesupremumoftheordinalsαsuchthatthereisasurjection.π:R→α.suchthatπ∈L(A,R).

  ⇨Θᴸ(ᴬᴿ)isameasureofthecomplexityofA.

  Relnrme

  SupposethatthereisaproperclassofwoodincardinalsandthatAisuniversallyBaire.

  ThenΘᴸ(ᴬᴿ)isawoodincardinalinHODᴸ(ᴬᴿ).

  HODᴸ(ᴬᴿ)andthelnnerModelprogram

  Theorcm(Steel)

  Supposethatthereisaproperclassofwoodincardinalsandletδ=Θᴸ(ᴿ).

  ThenHODᴸ(ᴿ)∩VδisaMitchell-Steelmodel.

  Theorcm

  Supposethatthereisaproperclassofwoodincardinals.

  ThenHODᴸ(ᴿ)isnotaMitchell-Steelmodel.

  Thereisanotherclassofsolutionstotheinnermodelproblemforlargecardinals.

  ⇨strategicpartial-extendermodels

  ⇨previouslyuhknown.

  TheaxiomforV=Ultimate-L

  (meta)Conjecture:TheaxiomforV=Ultimate-L

  ⇨Thereisastrongcardinalandaproperclassofwoodincardinals.

  ⇨Foreach∑₃-sentence φ,if φ holdsin V thenthereisauniversallyBairesetA⊆Rsuchthat

  HODᴸ(ᴬᴿ)∩VΘ╞φ

  where Θ=Θᴸ(ᴬᴿ).

  ⇨Theaxiomsettles(moduloaxiomsofinfinity)allsentencesaboutp(R)(andmuchmore)whichhavebeenshowntobeindependentbyCohen’smethod.

  Theorcm(V=Ultimate-L)

  TheComtinuumHypothesisholds。

  MoreconsequencesofV=Ultimate-L

  Theorem(V=Ultimate-L)

  Foreachcardinalκ.ifV[G]isaset-genericextensionofVthenthereexistsanelementaryembedding

  π:(H(κ¹))ᵛ→N

  u:kN+1(π,N)∈VandsuchthatN∈HODᵛ[ᶜ].

  corollary(V=Ultimate-L)

  V=HOD.

  corollary(V=Ultimate-L)

  Vistheminimumuniverse of the Generic-Multiverse.

数学联邦政治世界观提示您:看后求收藏(笔尖小说网http://www.bjxsw.cc),接着再看更方便。

相关小说

叶罗丽精灵梦之水的未婚妻 连载中
叶罗丽精灵梦之水的未婚妻
蓝汐如雪
王默有很多身份,是灵犀阁公主,凤凰公主,海洋公主等,还有很多身份我就不一一说了,她也是水王子的未婚妻,冰公主的嫂嫂,她真名叫雪蝶恋梦
0.8万字2个月前
我在泰娱哦! 连载中
我在泰娱哦!
Dy蒂伍艾
近年来,我迷上了泰娱,所以有这样的幻想也不为过。
39.8万字1个月前
万人迷她又被强取豪夺了 连载中
万人迷她又被强取豪夺了
李朵儿
【女主万人迷】+【众多修罗场】+【男神收割机】+【颜值巅峰】+【娇软美人】+【可甜可盐】+【强取豪夺】+【玛丽苏】+【绿茶美人】花琉璃只想完......
63.0万字2个月前
一本看哭人的小说 连载中
一本看哭人的小说
啊,天才!
----回忆里永远的End永恒----
7.0万字2个月前
蘤 连载中
繁梦hfrm
本片之前的名字《花》但由于一直打不出来,所以已《蘤》命名本篇文章是以一个穿梭在多重空间里的组织这个组织坐落在一道空间裂缝里名叫溟翼的神秘组织......
1.5万字1个月前
清依传 连载中
清依传
乔忆娇
原来,有一个人,从不在身边,心里却总是惦念!有一段情,隔着天涯,却倍感温暖!有一种承诺,不需说一生一世,可你知道此生此世,你注定与他相随……......
2.6万字1个月前